viernes, 24 de octubre de 2014

¿Qué Son Las Vitaminas y Los Minerales?

Oligoelemento

Los oligoelementos1 son bioelementos presentes en pequeñas cantidades (menos de un 0,05 %) en los seres vivos y tanto su ausencia como su exceso puede ser perjudicial para el organismo, llegando a ser hepatotóxicos. Además de los cuatro elementos de los que se compone mayoritariamente la vida (oxígeno, hidrógeno, carbono y nitrógeno), existe una gran variedad de elementos químicos esenciales. Las plantas los absorben de los minerales disueltos en el suelo, y de ahí pasan a los heterótrofos. Se sabe que existen grandes organismos que consumen suelo (geofagia) y visitan yacimientos minerales, de sal, por ejemplo, para conseguir los oligoelementos necesarios en su dieta.

Tabla periódica de los elementos de la dieta
H   He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca Sc   Ti V Cr Mn Fe Co Ni Cu Zn tpa Ge As Se Br Kr
Rb Sr Y   Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac ** Rf Db Sg Bh Hs Mt Ds Rg
 
  * Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
  ** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Funciones de los minerales en el organismo

En términos generales se puede decir que cumplen tres funciones específicas.
  • Función plástica: Dentro de este grupo se encuentran minerales como el calcio, flúor, magnesio, los cuales forman el tejido óseo. También encontramos el hierro, que forma la hemoglobina, necesaria para transportar oxigeno a todos los órganos y tejidos.
  • Función reguladora: Dentro de este grupo encontramos el yodo. El cual regula manteniendo el equilibrio de la glándula tiroidea.
  • Función de transporte: Dentro de este grupo se encuentra el sodio y potasio, los cuales actúan como transporte a través de la membrana celular.
Si bien existen muchos más minerales de los aquí nombrados, estos engloban a los más importantes. Muchos de lo que no se encuentran mencionados también cumplen las funciones anteriormente descriptas.

Los minerales son indispensables para mantenernos sanos y estos se consiguen naturalmente a través de los alimentos, por ello es necesario tener una alimentación completa, equilibrada y armónica.

Clasificación de los minerales

Los minerales se solían clasificar en la antigüedad con criterios de su aspecto físico; Teofrasto, en el siglo III a. C., creó la primera lista sistemática cualitativa conocida; Plinio el Viejo (siglo I), en su “Historia Natural”, realizó una Sistemática Mineral, trabajo que, en la Edad Media, sirvió de base a Avicena; Linneo (1707-1778) intentó idear una nomenclatura fundándose en los conceptos de género y especie, pero no tuvo éxito y dejó de usarse en el siglo XIX; con el posterior desarrollo de la química, el químico sueco Axel Fredrik Cronstedt (1722-1765) elaboró la primera clasificación de minerales en función de su composición; el geólogo estadounidense James Dwight Dana, en 1837, propuso una clasificación considerando la estructura y composición química. La clasificación más actual se funda en la composición química y la estructura cristalina de los minerales. Las clasificaciones más empleadas son las de Strunz y Kostov.

importancia de los minerales

Los minerales tienen gran importancia por sus múltiples aplicaciones en los diversos campos de la actividad humana. La industria moderna depende directa o indirectamente de los minerales; se usan para fabricar múltiples productos, desde herramientas y ordenadores hasta rascacielos.
Algunos minerales se utilizan prácticamente tal como se extraen; por ejemplo el azufre, el talco, la sal de mesa, etc. Otros, en cambio, deben ser sometidos a diversos procesos para obtener el producto deseado, como el hierro, cobre, aluminio, estaño, etc. Los minerales constituyen la fuente de obtención de los diferentes metales, base tecnológica de la sociedad actual. Así, de distintos tipos de cuarzo y silicatos, se produce el vidrio. Los nitratos y fosfatos son utilizados como abono para la agricultura. Ciertos materiales, como el yeso, son utilizados profusamente en la construcción. Los minerales que entran en la categoría de piedras preciosas o semipreciosas, como los diamantes, topacios, rubíes, se destinan a la confección de joyas.
Los minerales son un recurso natural de gran importancia para la economía de un país, muchos productos comerciales son minerales, o se obtienen a partir de un mineral. Muchos elementos de los minerales resultan esenciales para la vida, presentes en los organismos

TAREA MINERALES

Se llama mineral a la sustancia natural, homogénea, inorgánica, de composición química definida (dentro de ciertos límites). Posee una disposición ordenada de átomos de los elementos de que está compuesto, y esto da como resultado el desarrollo de superficies planas, conocidas como caras. Si el mineral ha crecido sin interferencias, pueden generarse formas geométricas características, conocidas como cristales.

martes, 9 de septiembre de 2014

reaccones de la beta oxidacion



Las cuatro reacciones de la ß-oxidación son:Descripción: esquema de la beta-oxidación
  1. Oxidación del acil graso-CoA a transΔ2-enoil-CoA (nombre genérico para un ácido graso activado con un doble enlace en transDescripción: glosarioen posición 2) por acción de una acil-CoA deshidrogenasa, una flavoenzima cuyo FAD se reduce a FADH2.
  2. Hidratación por incorporación de una molécula de agua al doble enlace entre los carbonos 2 y 3 catalizada por la enoil-CoA hidratasa (que solo actúa sobre dobles enlaces trans) para dar L-3-hidroxiacil-CoA.
  3. Oxidación catalizada por la hidroxiacil-CoA deshidrogenasa, con NAD+ como coenzima, que transforma el grupo hidroxilo en carbonilo y produce 3-cetoacil-CoA y NADH + H+.
  4. Tiólisis entre los carbonos α y ß, catalizada por la tiolasa, que libera una molécula de acetil-CoA al tiempo que la entrada de coenzima ADescripción: glosario permite que se forme un acil graso-CoA con dos carbonos menos que el de partida.
(Ver reacciones)
El acil graso-CoA generado tras estas cuatro reacciones repetirá el proceso que tendrá lugar las veces necesarias para que al final todos los carbonos del ácido graso de partida salgan en forma de acetil-CoA.
Las moléculas de acetil-CoA generadas pueden proseguir el metabolismo oxidativo entrando al ciclo de Krebs.
FADH2 y NADH + H+ cederán los electrones recogidos en la oxidación del ácido graso a la cadena de transporte electrónico mitocondrial.

miércoles, 20 de agosto de 2014

CICLO DE LA GLUCOLISIS BIOQUIMICA II ANAHI B E

CICLO DE LA GLUCOLISIS

LAS REACCIONES DE LA GLUCOLISIS 1.er paso: Hexoquinasa La primera reacción de la glucólisis es la fosforilación de la glucosa, para activarla (aumentar su energía) y así poder utilizarla en otros procesos cuando sea necesario. Esta activación ocurre por la transferencia de un grupo fosfato del ATP, una reacción catalizada por la enzima hexoquinasa la cual puede fosforilar (añadir un grupo fosfato) a moléculas similares a la glucosa, como la fructosa y manosa. Las ventajas de fosforilar la glucosa son 2: La primera es hacer de la glucosa un metabolito más reactivo, mencionado anteriormente, y la segunda ventaja es que la glucosa-6-fosfato no puede cruzar la membrana celular -a diferencia de la glucosa-ya que en la célula no existe un transportador de G6P. De esta forma se evita la pérdida de sustrato energético para la célula. Técnicamente hablando, la hexoquinasa sólo fosforila las D-hexosas, y utiliza de sustrato MgATP2+, ya que este catión permite que el último fosfato del ATP (fosfato gamma, γ-P o Pγ) sea un blanco más fácil para el ataque nucleofílico que realiza el grupo hidroxilo (OH) del sexto carbono de la glucosa, lo que es posible debido al Mg2+ que apantalla las cargas de los otros dos fosfatos. Esta reacción posee un ΔG negativo, y por tanto se trata de una reacción en la que se pierde energía en forma de calor. En numerosas bacterias esta reacción esta acoplada a la última reacción de la glucólisis (de fosfoenolpiruvato a piruvato) para poder aprovechar la energía sobrante de la reacción: el fosfato del fosfoenolpiruvato se transfiere de una a otra proteína de un sistema de transporte fosfotransferasa, y en última instancia, el fosfato pasará a una molécula de glucosa que es tomada del exterior de la célula y liberada en forma de G6P en el interior celular. Se trata por tanto de acoplar la primera y la última reacción de esta vía y usar el excedente de energía para realizar un tipo de transporte a través de membrana denominado translocación de grupo. 2° paso: Glucosa-6-P isomerasa Éste es un paso importante, puesto que aquí se define la geometría molecular que afectará los dos pasos críticos en la glucólisis: El próximo paso, que agregará un grupo fosfato al producto de esta reacción, y el paso 4, cuando se creen dos moléculas de gliceraldehido que finalmente serán las precursoras del piruvato. En esta reacción, la glucosa-6-fosfato se isomeriza a fructosa-6-fosfato, mediante la enzima glucosa-6-fosfato isomerasa. La isomerización ocurre en una reacción de 4 pasos, que implica la apertura del anillo y un traspaso de protones a través de un intermediario cis-enediol Puesto que la energía libre de esta reacción es igual a +1,7 kJ/mol la reacción es no espontánea y se debe acoplar. 3.er paso: Fosfofructoquinasa Fosforilación de la fructosa 6-fosfato en el carbono 1, con gasto de un ATP, a través de la enzima fosfofructoquinasa-1 (PFK1). También este fosfato tendrá una baja energía de hidrólisis. Por el mismo motivo que en la primera reacción, el proceso es irreversible. El nuevo producto se denominará fructosa-1,6-bisfosfato. La irreversibilidad es importante, ya que la hace ser el punto de control de la glucólisis. Como hay otros sustratos aparte de la glucosa que entran en la glucólisis, el punto de control no está colocado en la primera reacción, sino en ésta. La fosfofructoquinasa tiene centros alostéricos, sensibles a las concentraciones de intermediarios como citrato y ácidos grasos. Liberando una enzima llamada fosfructocinasa-2 que fosforila en el carbono 2 y regula la reacción. 4° paso: Aldolasa La enzima aldolasa (fructosa-1,6-bisfosfato aldolasa), mediante una condensación aldólica reversible, rompe la fructosa-1,6-bisfosfato en dos moléculas de tres carbonos (triosas): dihidroxiacetona fosfato y gliceraldehído-3-fosfato. Existen dos tipos de aldolasa, que difieren tanto en el tipo de organismos donde se expresan, como en los intermediarios de reacción. Esta reacción tiene una energía libre (ΔG) entre 20 a 25 kJ/mol, por lo tanto en condiciones estándar no ocurre de manera espontánea. Sin embargo, en condiciones intracelulares la energía libre es pequeña debido a la baja concentración de los sustratos, lo que permite que esta reacción sea reversible 5° paso: Triosa fosfato isomerasa Puesto que sólo el gliceraldehído-3-fosfato puede seguir los pasos restantes de la glucólisis, la otra molécula generada por la reacción anterior (dihidroxiacetona-fosfato) es isomerizada (convertida) en gliceraldehído-3-fosfato. Esta reacción posee una energía libre en condiciones estándar positiva, lo cual implicaría un proceso no favorecido, sin embargo al igual que para la reacción 4, considerando las concentraciones intracelulares reales del reactivo y el producto, se encuentra que la energía libre total es negativa, por lo que la dirección favorecida es hacia la formación de G3P. Éste es el último paso de la "fase de gasto de energía". Sólo se ha consumido ATP en el primer paso (hexoquinasa) y el tercer paso (fosfofructoquinasa-1). Cabe recordar que el 4.º paso (aldolasa) genera una molécula de gliceraldehído-3-fosfato, mientras que el 5.º paso genera una segunda molécula de éste. De aquí en adelante, las reacciones a seguir ocurrirán dos veces, debido a las 2 moléculas de gliceraldehído generadas de esta fase. Hasta esta reacción hay intervención de energía (ATP). 6° paso: Gliceraldehído-3-fosfato deshidrogenasa Esta reacción consiste en oxidar el gliceraldehído-3-fosfato utilizando NAD+ para añadir un ion fosfato a la molécula, la cual es realizada por la enzima gliceraldehído-3-fosfato deshidrogenasa o bien, GAP deshidrogenasa en 5 pasos, y de ésta manera aumentar la energía del compuesto. Técnicamente, el grupo aldehído se oxida a un grupo acil-fosfato, que es un derivado de un carboxilo fosfatado. Este compuesto posee una energía de hidrólisis sumamente alta (cercana a los 50 kJ/mol) por lo que se da inicio al proceso de reacciones que permitirán recuperar el ATP más adelante. Mientras el grupo aldehído se oxida, el NAD+ se reduce, lo que hace de esta reacción una reacción redox. El NAD+ se reduce por la incorporación de algún [H+] dando como resultado una molécula de NADH de carga neutra. 7° paso: Fosfoglicerato quinasa En este paso, la enzima fosfoglicerato quinasa transfiere el grupo fosfato de 1,3-bisfosfoglicerato a una molécula de ADP, generando así la primera molécula de ATP de la vía. Como la glucosa se transformó en 2 moléculas de gliceraldehído, en total se recuperan 2 ATP en esta etapa. Nótese que la enzima fue nombrada por la reacción inversa a la mostrada, y que ésta opera en ambas direcciones. Los pasos 6 y 7 de la glucólisis nos muestran un caso de acoplamiento de reacciones, donde una reacción energéticamente desfavorable (paso 6) es seguida por una reacción muy favorable energéticamente (paso 7) que induce la primera reacción. En otras palabras, como la célula se mantiene en equilibrio, el descenso en las reservas de 1,3-bisfosfoglicerato empuja a la enzima GAP deshidrogenasa a aumentar sus reservas. La cuantificación de la energía libre para el acople de ambas reacciones es de alrededor de -12 kJ/mol. Esta manera de obtener ATP sin la necesidad de O2 se denomina fosforilación a nivel de sustrato. 8° paso: Fosfoglicerato mutasa Se isomeriza el 3-fosfoglicerato procedente de la reacción anterior dando 2-fosfoglicerato, la enzima que cataliza esta reacción es la fosfoglicerato mutasa. Lo único que ocurre aquí es el cambio de posición del fosfato del C3 al C2. Son energías similares y por tanto reversibles, con una variación de energía libre cercana a cero. 9° paso: Enolasa La enzima enolasa propicia la formación de un doble enlace en el 2-fosfoglicerato, eliminando una molécula de agua formada por el hidrógeno del C2 y el OH del C3. El resultado es el fosfoenolpiruvato. 10° paso: Piruvato quinasa Desfosforilación del fosfoenolpiruvato, obteniéndose piruvato y ATP. Reacción irreversible mediada por la piruvato quinasa.

domingo, 17 de agosto de 2014

¿Qué son los defectos de la β-oxidación de los ácidos grasos?

Son enfermedades hereditarias del metabolismo de las grasas.

¿Qué hay Que hacer para evitar las consecuencias de un defec- to de la β-oxidación?

El tratamiento de los defectos de la β-oxidación se basa en prevenir la hipoglucemia, lo que se consi- gue: 1) evitando el ayuno prolongado, mediante una dieta fraccionada, 2) mediante una dieta rica en hidratos de carbono, con restricción de grasas, 3) administrando suplementos de: a) L-carnitina (indispensable en pacientes con déficit primario de carnitina), b) riboflavina, en la deficiencia múltiple de deshidrogenasas, c) MCT, en las deficiencias que impliquen los ácidos grasos de cadena larga. Los defectos de la β-oxidación son enfermedades graves si no están diagnosticadas. Sin embargo, si se diagnostican y tratan lo antes posible sus con- secuencias se pueden evitar o minimizar, mejoran- do así la calidad de vida de estos pacientes.

¿Qué ocurre en el caso de un niño/a que nace con un defecto de la β-oxidación?

El niño nace en general sin problemas y el debut se produce a menudo en la lactancia, asociado a procesos febriles, ejercicio prolongado, infeccio- nes, intervenciones quirúrgicas, con pérdida de apetito y vómitos. Cuando las necesidades ener- géticas del niño son superiores al aporte externo de glucosa y al que le proporciona la degrada- ción del glucógeno hepático, se pone en marcha la β-oxidación de los ácidos grasos. Si esta vía está interferida por un defecto en la misma o en el metabolismo de la carnitina, se produce una hipoglucemia hipocetósica, que puede condu- cir al coma, ya que el fallo de síntesis de acetil- CoA se traduce en un defecto de la formación de cuerpos cetónicos. Pueden presentarse signos de fallo hepático con hiperamoniemia. Se han descrito más de 22 defectos en los distin- tos pasos de la β-oxidación y por ello el espectro de síntomas clínicos es muy amplio, abarcando desde pacientes asintomáticos o con una leve hipotonía hasta debilidad muscular y cardiomio- patía. Las manifestaciones clínicas dependen del nivel al cual se halla interferida la vía metabólica, de la toxicidad de los metabolitos acumulados, y de la actividad enzimática residual.

ENFERMEDAD DE BETA OXIDACION

martes, 15 de julio de 2014